Sketsalahgrafik fungsi berikut ini y=2×^2+9x - 9794150 lizazainal lizazainal 10.03.2017 Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut ini y=2×^2+9x 1 Lihat jawaban Iklan Iklan Mamanosz Mamanosz Kategori : Matemtika Bab Fungsi Kuadrat Kelas : X (1 SMA) Jawaban ada di lampiran. min krena a

sketsalah grafik fungsi berikut ini. a. y = 2x² + 9x Jawaban Soal diatas merupakan materi fungsi kuadrat. Ingat! Bentuk umum fungsi kuadrat y = f 𝑥 = a𝑥² + b𝑥+ c Bentuk umum persamaan kuadrat a𝑥²+b𝑥+c= 0 , a ≠ 0 Keterangan 𝑥 = variabel a = koefisien kuadrat dari 𝑥² b = koefisien liner dari 𝑥 c = konstanta Cara membuat grafik persamaan kuadrat adalah dengan mencari dua koordinat titik 1. Memotong sumbu 𝑥 Maka nilai y = 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai 𝑥. Diperoleh koordinat yang memotong sumbu 𝑥. 2. Memotong sumbu y Maka nilai 𝑥= 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai y. Diperoleh koordinat yang memotong sumbu y. 3. Menentukan sumbu simetri xp = – b/2a 4. Menentukan titik puncak dengan titik koordinat 5. Gambar grafik fungsi kuadrat Diketahui, Asumsikan Persamaan y = 2𝑥² + 9𝑥 Ditanyakan, Grafik garis persamaan Dijawab, 1. Titik potong dengan sumbu 𝑥 maka y = 0 y = 2𝑥² + 9𝑥 0 = 2𝑥² + 9𝑥 Cari faktor dari 2𝑥² + 9𝑥=0 2𝑥² + 9𝑥=0 𝑥 2𝑥+ 9=0 𝑥 = 0 atau 2𝑥 + 9 = 0 𝑥 = – 9/2 𝑥 = -4,5 Di dapatkan nilai 𝑥 = 0 atau 𝑥 = – 9 sehingga titiknya adalah 0,0 dan -4,5,0. 2. Titik potong dengan sumbu y maka 𝑥 = 0 y = 2𝑥² + 9𝑥 y = 20² + 90 y = 0 Didapatkan titik koordinat 0, 0 3. Menentukan sumbu simetri xp = – b/2a 2𝑥² + 9𝑥=0 maka a = 1, b = 9 dan c = 0 xp = -b/2a = – 9/ 22 = -9/4 = -2,25 4. Menentukan titik puncak dengan titik koordinat Subtitusi xp =-2,25 ke persamaan 2𝑥² + 9𝑥=0 yp= f -2,25 = 2𝑥² + 9𝑥 = 2- 2,25 ² + 9-2,25 = 2 5,0625 – 20,25 = 10,125 – 20,25 = – 10,125 Di dapatkan titik puncak xp, yp = -2,25, – 10,125 Gambar grafik di bawah ini

Jawabanpaling sesuai dengan pertanyaan sketsalah grafik fungsi berikut y=2x^(2)+9x. Berikut Ini Adalah Pembahasan Dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Y 4 x dan y 4 x c. Apakah relasi yang didefinisikan seperti berikut ini merupakan suatu fungsi? Sketsalah grafik fungsi berikut a. Y 8 X Dan Y 8 X X. Sebuah bola
Halo, Mino M. Kakak bantu jawab ya. Jawaban gambar grafik fungsi terlampir di bawah Ingat kembali langkah-langkah menggambar grafik fungsi kuadrat a. Tentukan titik potong terhadap sumbu X terjadi ketika y=0 b. Tentukan titik potong terhadap sumbu Y terjadi ketika x=0 c. Tentukan titik optimum dengan titik koordinat -b/2a,f-b/2a d. Hubungkan titik-titik yang diperoleh dari langkah a, b, dan c. Diketahui fungsi kuadrat y=8x²-16x+6 sehingga a = 8, b = -16, dan c = 6 a. titik potong terhadap sumbu X terjadi ketika y=0 y=8x²-16x+6 0 = 2x-14x-6 Pembuat nol fungsi 2x-1 = 0 2x = 1 x = 1/2 atau 4x-6 = 0 4x = 6 x = 6/4 x = 3/2 Oleh karena itu, titik potong terhadap sumbu X adalah 1/2,0 dan 3/2,0 b. titik potong terhadap sumbu Y terjadi ketika x=0 y=8x²-16x+6 y=80²-160+6 y=6 Oleh karena itu, titik potong terhadap sumbu Y adalah 0,6 c. titik optimum x = -b/2a x = -16/28 x = 16/16 x = 1 Substitusikan x = 1 ke y=8x²-16x+6sehingga y=8x²-16x+6 y=81²-161+6 y = 8 - 16 + 6 y = -2 Oleh karena itu, titik optimumnya adalah 1,-2 Hubungkan titik-titik yang telah ditemukan, maka diperoleh grafik seperti berikut. Jadi, grafik fungsi kuadrat y=8x²-16x+6 adalah seperti berikut. Sketsalahgrafik fungsi berikut ini. a. y=2x^(2)+9x
HAHalo Niko N Jawaban grafik terlampir pada gambar di bawah dalam membuat grafik kita perlu menentukan titik x dan y, bila diketahui fungsi y diketahui fungsi y=7x²-3x+2 Jika x = -3 maka y y = 7x²-3x+2 y = 7-3² - 3-3 + 2 y = 79 - 3-3 + 2 y = 63 + 9 + 2 y = 72 + 2 y = 74 Jika x = -2 maka y y = 7x²-3x+2 y = 7-2² - 3-2 + 2 y = 74 - 3-2 + 2 y = 28 + 6 + 2 y = 34 + 2 y = 36 Jika x = -1 maka y y = 7x²-3x+2 y = 7-1² - 3-1 + 2 y = 71 - 3-1 + 2 y = 7 + 3 + 2 y = 10 + 2 y = 12 Jika x = 0 maka y y = 7x²-3x+2 y = 70² - 30 + 2 y = 70 - 30 + 2 y = 0 + 0 + 2 y = 2 Jika x = 1 maka y y = 7x²-3x+2 y = 71² - 31 + 2 y = 71 - 31 + 2 y = 7 - 3 + 2 y = 4 + 2 y = 6 Jika x = 2 maka y y = 7x²-3x+2 y = 72² - 32 + 2 y = 74 - 32 + 2 y = 28 - 6 + 2 y = 22 + 2 y = 24 Jika x = 3 maka y y = 7x²-3x+2 y = 73² - 33 + 2 y = 79 - 33 + 2 y = 63 - 9 + 2 y = 54 + 2 y = 56 Sehingga bentuk grafiknya adalah pada gambar di bawah iniYah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Sketsalahgrafik fungsi berikut a) 2x ^2 +9x - 17840132 dinda8679 dinda8679 24.09.2018 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut a) 2x ^2 +9x b) y= 8x^2-16x+6 1 Lihat jawaban Adakah bokeo Iklan
Sketsalah grafik fungsi berikut ini. A. y=2x²+9x B. y=8x²-16x+6 Jawaban a. fungsi y = 2x² + 9x memotong sumbu x pada saat y = 0 y = 2x² + 9x 0 = 2x² + 9x x2x + 9 = 0 x = 0 atau 2x + 9 = 0 2x = -9 x = – ⁹/₂ memotong sumbu y pada saat x = 0 y = 2x² + 9x y = 20² + 90 y = 0 + 0 y = 0 determinan d = b² – 4ac = 9² – = 81 – 0 = 81 titik puncak fungsi atau titik balik = -b/2a , -d/4a = -⁹/₄, ⁻⁸¹/₈ a = 2 a > 0 grafik menghadap keatas B. y = 8x² – 16x + 6 memotong sumbu x ketika y = 0 8x² – 16x + 6 = 0 4x – 2 2x – 3 = 0 4x – 2= 0 atau 2x – 3 = 0 4x = 2 2x = 3 x = 2/4 = 1/2 x = 3/2 memotong sumbu y pada saat x = 0 y = 8x² – 16x + 6 y = – + 6 y = 6 titik balik xa = -b/2a = 16/16 = 1 ya = – + 6 = 8 – 16 + 6 = -2 714 total views, 1 views today Sketsalahgrafik fungsi y=2x^2 + 9x - 15028720 murniati6 murniati6 25.03.2018 Matematika Sekolah Dasar terjawab • terverifikasi oleh ahli Situs ini menggunakan cookie berdasarkan kebijakan cookie . Kamu bisa menentukan kondisi menyimpan dan mengakses cookie di browser PERUSAHAAN Tentang kami Hallo Raya R, Kakak bantu jawab yaa Jawaban Grafik fungsi kuadrat terlampir pada gambar di bawah ini. Ingat! ➡️ Langkah-langkah yang dilakukan untuk menggambar grafik fungsi kuadrat y = ax² + bx + c adalah a. Tentukan titik potong grafik terhadap sumbu x b. Tentukan titik potong grafik terhadap sumbu y c. Tentukan persamaan sumbu simetri d. Tentukan nilai optimum fungsi e. Tentukan titik puncak f. Hubungkan titik-titik yang diperoleh pada bidang cartesius ➡️ Rumus untuk menentukan persamaan sumbu simetri fungsi kuadrat y = ax² + bx + c adalah sebagai berikut xp = - b / 2a ➡️ Rumus untuk menentukan nilai optimum fungsi kuadrat y = ax² + bx + c adalah sebagai berikut yp = -D/4a ➡️ Rumus untuk menentukan diskriminan fungsi kuadrat adalah sebagai berikut D = b² - 4ac dengan D Diskriminan a Koefisien x² b koefisien x c konstanta Dari soal diketahui fungsi kuadrat nya adalah y = 2x² + 9x. Dengan menggunakan konsep di atas, diperoleh perhitungan sebagai berikut ⏺ Titik potong fungsi terhadap sumbu x, maka y = 0 y = 2x² + 9x 0 = 2x² + 9x 0 = x 2x + 9 x 2x + 9 = 0 maka x = 0 atau 2x + 9 = 0 2x = -9 x = -9/2 x = -4 1/2 Jadi titik potong terhadap sumbu x adalah 0, 0 dan -4 1/2, 0 ⏺ Titik potong fungsi terhadap sumbu y, maka x = 0 y = 2x² + 9x y = 20² + 90 y = 0 + 0 y = 0 Jadi titik potong terhadap sumbu y adalah 0, 0 ⏺ Persamaan sumbu simetri y = 2x² + 9x -> a = 2, b = 9 dan c = 0 xp = -b / 2a xp = -9 / 22 xp = -9/4 xp = -2 1/4 ⏺ Nilai Optimum fungsi kuadrat y = 2x² + 9x -> a = 2, b = 9 dan c = 0 yp = - D / 4a yp = - b² - 4ac / 4a yp = - 9² - 420 / 42 yp = - 81 - 0 / 8 yp = - 81 / 8 yp = - 10 1/8 ⏺ Titik puncak fungsi kuadrat Titik puncak = xp, yp Titik puncak = -2 1/4, -10 1/8 Dengan menghubungkan titik-titik yang sudah diperoleh, dapat digambarkan grafik funngsi kuadrat tersebut seperti yang dilampirkan pada gambar di bawah ini. Dengan demikian, gambar grafik fungsi seperti yang terlampir di bawah ini. Terima kasih, semoga membantu
Pertanyaan sketsalah grafik fungsi berikut ini. a. y = 2x² + 9x. Mau dijawab kurang dari 3 menit? Coba roboguru plus! roboguru plus!
August 27, 2020 Latihan Halaman 102 - 103 Bab 2 Persamaan dan Fungsi Kuadrat Latihan Matematika MTK Kelas 9 SMP/MTS Semester 1 K13 Jawaban Latihan Halaman 102 Matematika Kelas 9 Persamaan dan Fungsi Kuadrat Jawaban Latihan Matematika Kelas 9 Halaman 102 Persamaan dan Fungsi Kuadrat Jawaban Latihan Halaman 102 MTK Kelas 9 Persamaan dan Fungsi Kuadrat Jawaban Latihan Halaman 102 Matematika Kelas 9 Persamaan dan Fungsi Kuadrat Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Bab 2 Persamaan dan Fungsi Kuadrat Latihan Hal 102, 103 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 102, 103. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 9 dapat menyelesaikan tugas Persamaan dan Fungsi Kuadrat Kelas 9 Halaman 102, 103 yang diberikan oleh bapak ibu/guru. Kunci Jawaban MTK Kelas 9 Semester 1. Kunci Jawaban Matematika Kelas 9 Halaman 102, 103 Latihan 1. Tentukan sumbu simetri grafik fungsi di bawah ini. a. y = 2x2 − 5x b. y = 3x2 + 12x Related Kunci Jawaban Matematika Kelas 9 Halaman 92, 93 Latihan Kunci Jawaban Matematika Kelas 9 Halaman 81, 82 Latihan Kunci Jawaban Matematika Kelas 8 Halaman 86 - 88 Ayo Kita Berlatih c. y = –8x2 − 16x − 1 Jawaban a Sumbu simetrinya adalah x = -b/2a = - -5 / 2x2 = 5/4 b Sumbu simetrinya adalah x = -b/2a = - 12 / 2x3 = -2 c Sumbu simetrinya adalah x = -b/2a = - -16 / 2x-8 = -1 2. Tentukan nilai optimum fungsi berikut ini. a. y = –6x2 + 24x − 19 b. y =2/5 x2 – 3x + 15 c. y = -3/4 x2 + 7x − 18 Jawaban 3. Sketsalah grafik fungsi berikut ini. a. y = 2x2 + 9x b. y = 8x2 − 16x + 6 Jawaban 4. Diketahui suatu barisan 1, 7, 16, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan suku ke 100. Jawaban Dari persamaan diatas akan didapat a + b + c = 1 persamaan 1 4a + 2b + c = 7 persamaan 2 9a + 3b + c = 16 persamaan 3 *Eliminasi persamaan 1 dan 2* Didapat 3a + b = 6 persamaan 4 *Eliminasi persamaan 2 dan 3* Didapat 5a + b = 9 persamaan 5 *Eliminasi persamaan 4 dan 5* Didapat 2a = 3 atau a = 3/2 *Subtitusi nilai a ke persamaan 4* Didapat 33/2 + b = 6 atau b = 3/2 *Subtitusi nilai a dan b ke persamaan 1* Didapat 3/2 + 3/2 + c = 1 atau c = -2 Maka ditemukan persamaan umum rumus Un = 3/2n2 + 3/2n + c U100 = 3/21002 + 3/2100 + -2 = Jadi, suku ke 100 nya adalah 5. Diketahui suatu barisan 0, –9, –12, .... Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan nilai minimum dari barisan tersebut. Jawaban *Langkah-langkah seperti jawaban nomor 4* Maka ditemukan persamaan umum rumus Un = 3i2 -18i + 15 Nilai minimum dari barisan tersebut ym = - D/4a = - b2 - 4ac / 4a Nilai minimum = - -182 - 4315 / 43 = - 324 - 180 / 12 = -144/12 = -12 Jadi, nilai minimum barisan tersebut adalah -12. 6. Fungsi kuadrat y = fx melalui titik 3, –12 dan 7, 36. Jika sumbu simetrinya x = 3, tentukan nilai minimum fungsi fx. Jawaban Jadi, nilai minimum fungsi fx adalah -12. 7. Bila fungsi y = 2x2 + 6x − m mempunyai nilai minimum 3 maka tentukan m. Jawaban Sumbu simetrinya adalah x = -b / 2a = - 6 / 2x2 = -6/4 , subtitusi nilai x kedalam fungsi y 2-6/42 + 6-6/4 - m = 3 m = 236/16 - 9 - 3 m = -15/2 Jadi, nilai m adalah -15/2. 8. Dari tahun 1995 sampai 2002, banyaknya pelanggan telepon genggam N dalam juta orang dapat dimodelkan oleh persamaan N = 17,4x2 + 36,1x + 83,3, dengan x = 0 merepresentasikan tahun 1995. Pada tahun berapa banyaknya pelanggan mencapai nilai maksimum? Jawaban Dilihat dari persamaan N, nilai N akan selalu lebih besar apabila x + 1 > x. 1995 nilai x = 0 1996 nilai x = 1 1997 nilai x = 2 2002 nilai x = 7 Sehingga pelanggan maksimum akan terjadi pada tahun 2002 dengan x = 7, subtitusi x ke persamaan N N = 17,4x2 + 36,1x + 83,3 = 17,472 + 36,17 + 83,3 = 1,1886 miliar pengguna Jadi banyak pelanggan mencapai nilai maksimum terjadi pada tahun 2002 dengan jumlah pelanggan 1,1886 miliar pengguna. 9. Jumlah dua bilangan adalah 30. Jika hasil kali kedua bilangan menghasilkan nilai yang maksimum, tentukan kedua bilangan tersebut. Jawaban Misalkan dua bilangan tersebut adalah a, b dan = 30 - b fb = a × b = 30 - b × b = 30b - b2 nilai turunan = 0 30 - 2b = 0 2b = 30 b = 15 a = 30 - b a = 30 - 15 a = 15 Jadi, nilai kedua bilangan tersebut adalah 15 dan 15. 10. Selisih dua bilangan adalah 10. Jika hasil kali kedua bilangan menghasilkan nilai yang minimum, tentukan kedua bilangan tersebut. Jawaban Misalkan dua bilangan tersebut adalah a, b dengan a > b maka a = 10 + b sehingga fb = a × b = 10 + b × b = 10b + b2 nilai turunan = 0 10 + 2b = 0 2b = -10 b = -5 a = 10 + b a = 10 - 5 a = 5 Jadi, nilai kedua bilangan tersebut adalah -5 dan 5.
Sketsalahgrafik fungsi berikut ini. - 17944209 safiradwiyanti8 safiradwiyanti8 28.09.2018 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut ini. A. y=2x²+9x B. y=8x²-16x+6 1 Lihat jawaban kurang jelas deh gambarnya Iklan
PembahasanIngat bahwa titik potong dengan sumbu y maka nilai x = 0 titik ekstrim − 2 a b ​ , − 4 a b 2 − 4 a c ​ Titik potong dengan sumbu y y = − 2 x 2 + 4 x − 6 y = − 2 0 2 + 4 0 − 6 y = − 6 Jadi titik potong dengan sumbu y berada pada titik 0 , − 6 . Titik ekstrim x e ​ ​ = = = = ​ − 2 a b ​ − 2 − 2 4 ​ − − 4 4 ​ 1 ​ y e ​ ​ = = = = = ​ − 4 a b 2 − 4 a c ​ − 4 − 2 4 2 − 4 − 2 − 6 ​ − − 8 16 − 48 ​ − − 8 − 32 ​ − 4 ​ Jadi titik ekstrimnya 1 , − 4 Dengan demikian, grafiknya dapat digambarkan sebagai berikutIngat bahwa titik potong dengan sumbu maka nilai titik ekstrim Titik potong dengan sumbu Jadi titik potong dengan sumbu berada pada titik . Titik ekstrim Jadi titik ekstrimnya Dengan demikian, grafiknya dapat digambarkan sebagai berikut 3 Sketsalah grafik fungsi berikut ini. a. y = 2x (akar 2) + 9x b. y = 8×2 − 16x + 6 matematika kelas 9 latihan 2.3 Sumbu Simetri dan Titik Optimum halaman 102 103 bab 2 semester 1 kurikulum 2013 edisi revisi 2018 soal dan jawaban soal MTK kelas 3 smp mts bab 2 Persamaan dan Fungsi Kuadrat Halo, Roy H! Kakak bantu ya. Jawabannya Ada pada gambar di bawah. Pembahasan Langkah-langkah untuk menggambar grafik fungsi kuadrat y = fx = ax² + bx + c 1. Tentukan diskriminan D = b² − 4ac a. Jika D > 0, maka memotong sumbu-x di dua titik b. Jika D = 0, maka menyinggung sumbu-x di satu titik c. Jika D 0, maka fungsi terbuka ke atas dan memiliki nilai minimum b. Jika a 0, maka fungsi kuadrat tersebut memotong sumbu-x di dua titik 2. Sehingga titik potong terhadap sumbu-x, maka y=0 y=2x²+9x 0=2x²+9x difaktorkan 0=x2x+9 x=0 atau x=-9/2 →0,0 dan -9/2,0 3. Titik potong terhadap sumbu-y, jika x = 0 y=2x²+9x y=20²+90 y =0 → 0,0 4. Persamaan sumbu simetri yaitu x = −b/2a x = −b/2a x = −9/22 x = -9/4 5. Karena a > 0, maka memiliki nilai minimum y = -D/4a yaitu y = -D/4a y=-81/42 y=-81/8 6. Titik balik minimum −b/2a, -D/4a = -9/4, 81/8 7. Titik-titk yang lainnya x = −2 -> y=2x²+9x y=2-2²+9-2 y = 8 -18 y = -10 →−2,-10 x = -4 -> y=2x²+9x y=2-4²+9-4 y = 32 -36 y = -4 → -4,-4 8. dibuat parabola yang melalui titik-titik tersebut Jadi, gambar grafik fungsi kuadrat y=2x²+9x adalah
Jawabanpaling sesuai dengan pertanyaan Sketsalah grafik fungsi berikut y=2x^(2)+9x. Belajar. Primagama. ZeniusLand. Profesional. Fitur. Paket Belajar. Promo. Testimonial. Blog. Panduan. Bagikan. Sketsalah grafik fungsi berikut y = 2 x 2 + 9 x y=2x^2+9x y = 2 x 2 + 9 x . Jawaban. Untuk menjawab soal ini, kita akan coba menentukan nilai
Sketsalah grafik fungsi berikut ini y = 2x2 + 9x, pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan Sumbu Simetri dan Titik Optimum materi Semester 1. Silahkan kalian pelajari materi Bab II Persamaan dan Fungsi Kuadrat pada buku matematika kelas IX Kurikulum 2013 Revisi 2018. Pembahasan kali ini merupakan lanjutan dari tugas sebelumnya, dimana kalian telah mengerjakan soal Tentukan Sumbu Simetri Grafik Fungsi di Bawah Ini y = 2×2 – 5x secara lengkap. Latihan Sumbu Simetri dan Titik Optimum 2. Tentukan nilai optimum fungsi berikut ini. a. y = –6x2 + 24x − 19 b. y = 2/5x2 – 3x + 15 c. y = -3/4x2 + 7x − 18 Jawaban a. y = -6x^2 + 24x – 19 a = -6 b = 24 c = -19 Maka -D/4a = -b2 – 4ac / 4c -242 – 4 -6 -19 / 4-6 = -576 – 456/-24 -120/-24 = 5 b. y = 2/5×2 – 3x + 15 a = 2/5 b = -3 c = 15 Maka -D/4a = -b2 – 4ac / 4c -32 – 42/5 15 / 4. 2/5 -9-24/8/5 15/ 8/5 = = 75/8 c. y = -3/4×2 + 7x – 18 a = -3/4 b = 7 c = -18 Maka -D/4a = -b2 – 4ac / 4c -72 – 4-3/4 -18 / 4 -3/4 =-49-54 / -3 5/-3 3. Sketsalah grafik fungsi berikut ini. a. y = 2x2 + 9x b. y = 8x2 − 16x + 6 Jawaban a. y = 2×2 + 9x Sumbu x saat y 2×2 + 9x = 0 x 2x + 9 = 0 maka x = 0 atau 2x + 9 = 0 2x = -9 x = -9/2 jadi titik 0,0 ; -9/2,0 sumbu y saat x = 0 y = 2×2 + 9x y = 202 + 90 y = 0 Maka titik 0,0 Jadi titik baliknya adalah xa = -b/2a = -9/22 = -9/4 ya = -b2 – 4ac / 4a ya = -b2 – 4ac / 4a ya = – 92 – / 42 ya = – 81 – 0 / 8 ya = -81 / 8 Koordinat titik balik -9/4, -81/8 -2,25 ; -10,125 b. y = 8×2 – 16x + 6 Sumbu x ketika y = 0 8x^2 – 16x + 6 = 0 4x – 22x – 3 = 0 Maka 4x – 2 = 0 4x = 2 x = 2/4 = 1/2 dan 2x – 3 = 0 2x = – 3 x = -3/2 Maka titik 1/2,0 ; -3/2,0 sumbu y ketika x = 0 y = 8×2 – 16x + 6 y = 802 – 160 + 6 y = 6 Maka Koordinat 0,6 Jadi titik baliknya adalah xa = -b/2a = -16 / 28 = 16/16 = 1 ya = 812 – 161 + 6 ya = 8 – 16 + 6 ya = -2 Koordinat 1, -2 Jadi gambar grafiknya seperti di bawah ini 4. Diketahui suatu barisan 1, 7, 16, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan suku ke 100. 5. Diketahui suatu barisan 0, –9, –12, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan nilai minimum dari barisan tersebut. Jawaban, buka disini Diketahui Suatu Barisan 1 7 16 Suku Ke-n Dari Barisan Tersebut Dapat Dihitung dengan Rumus Demikian pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan Sumbu Simetri dan Titik Optimum pada buku semester 1 kurikulum 2013 revisi 2018. Semoga bermanfaat dan berguna bagi kalian. Kerjakan juga pembahasan soal lainnya. Terimakasih, selamat belajar! .
  • i274htx2te.pages.dev/478
  • i274htx2te.pages.dev/491
  • i274htx2te.pages.dev/817
  • i274htx2te.pages.dev/57
  • i274htx2te.pages.dev/657
  • i274htx2te.pages.dev/892
  • i274htx2te.pages.dev/531
  • i274htx2te.pages.dev/210
  • i274htx2te.pages.dev/564
  • i274htx2te.pages.dev/486
  • i274htx2te.pages.dev/70
  • i274htx2te.pages.dev/908
  • i274htx2te.pages.dev/280
  • i274htx2te.pages.dev/992
  • i274htx2te.pages.dev/966
  • sketsalah grafik fungsi berikut ini y 2x2 9x